ERIN GREENE & ASSOCIATES

BUSINESS INFORMATION MANAGEMENT SYSTEMS

2613 North 11th Street

Ocean Springs, MS 39564-8364

Phone: 228-875-6003

Fax :228-872-9904

Email: rhartney @ bellsouth.net

SYSTEM OVERVIEW

Cancer Therapy Evaluation Program’s

And Computer Support

SOL N02-CM-17021-23

March 2002

INTRODUCTION

Erin Greene and Associates is pleased to submit the enclosed summary of our Business Information Management System. We believe it will be a good base

for moving into the development phase and will greatly reduce your estimate of 225 productive FTE’s.

The components we have selected are State-of-the-Art FPGA’s (Field Programmable Gate Arrays) and High Performance Two and Four Port SSRAM

(Synchronous Static Random Access Memory). And we agree that components seem to have an 18 month technology cycle as you state, and we have experienced. We have spent approximately 5 years in developing what we are presenting, primarily because of the improvement in FPGA devices. Our goal from the beginning was to have a Computer-on-a-Chip; the result is the ERIN64

Processor. The SSRAM devices have a 4.5 NS (Nano-second) access time.

Even if the access was ZERO, in most cases you would have to allow 5 NS from the Address source, and 5 NS from the RAM to its destination. These are circuit board delays. That is 10 NS for a Zero Access Memory. However; since we use an Instruction and Operand pre-fetch; none of this time is apparent.

We are suggesting a Concept Design Review very soon after Contract Award if selected. We have just one decision to make at this time – do we use the PCI (Peripheral Controller Interface) or use our own design. We will probably use our own logic design to have an increase in performance.

The budget we have submitted includes a 16 Terminal System. This configuration will show the balance in Processor speed, latency and bandwidth

which can be monitored.

The National Security aspect is addressed and can be accomplished in several ways. A Card Reader is one way; an Application Program, and/or a specific terminal; and/or a user Password. An Application Program can also cause an intrusion to be monitored and from which Terminal. Refer to page 16.

You will notice that a the following desciptives are slanted toward a Medical environment. Forgetting that; it still provides an insight for what we shall accomplish. This proposal is also being presented to DOD for a High

Productive Computing System.

If there are any Math functions that are not included; so state; and they shall be included.

1. THE PRODUCT

The objective is to produce a low cost, high performance, user operated Mouse controlled, Display Terminal System using two embedded ERIN64 Processors and eight

Math Co-Processors.

Note: While reading this document; keep in mind there are three types of system

 users:

(1) The End-User (Keyboard and Mouse only)

(2) Application Programmer (TIPS)

(3) System Programmer (Machine Language)

The resulting system may be used in virtually any commercial small/large

business application including but not limited to Federal/State/Local Government, where

the present day usage is the Personal Computer (PC) with or without LAN, or Network

Server Hardware/Software. Simply discard the Tower/Server/LAN with whatever they contain: retain the remaining devices: and plug-in the new Processing Hardware and Application Programs. This system is open-ended to ALL types of Peripheral Devices.

A typical application could be ALL Departments and ALL associated functions in a Hospital or Group of Hospitals. Or; it could be used on a Navy Aircaft Carrier for all

“business” applications such as Personnel Files, Food Inventory, Supply Department Inventory and so on. If you ask the question – CAN IT DO? – The answer is YES….

The system is programmed in a language called TIPS. TIPS is an acronym for Total Information Programming System. It should be understood by the user at the outset:

 The ENTIRE UNIVERSE is FILE, FORM, PAGE and PART oriented.

 TIPS is an interpretive language which provides the Application Programmer with the capabilities to Collect, Store, Manipulate, Structure, and Retrieve blocks of data. The language is therefore File, Form, Page, and Part oriented. It is a complete operating system designed to handle the requirements for the manipulation, organization, and structuring of data. TIPS can operate on an unlimited collection of structured data. The size of the collection is limited only by the memory capacity of the user’s system. New disk storage can be added to the system without affecting the structure or functioning of the language. This in effect becomes a huge, expandable catalog of filed information that has been collected and organized by the user. New data can be added to existing files: new files can be created, either for new data, or for re-ordering existing data, or combinations of both. Data can be removed, refiled, or restructured at the discretion of the user..

TIPS has been specifically designed to function in a multi-user, multi-port environment and currently occupies only 10,000 bytes of Memory – more specifically – 9,967 Instructions. The system is designed to accommodate from 1 to 128 User Stations. A parallel expansion port is provided for “N” sub-systems.

TIPS may be used to efficiently access and manipulate data for many users at one time. Central programs can be written which will run on all terminals or on some of the terminals, or specific programs can be written to run on a specified terminal. For example, it may be convenient to run the same program on all nursing station terminals. A central program can be designed for just those terminals. If one terminal is meant for some class of privileged users, unique programs can be designed to run only on that terminal. The user can define his program to run on any of the terminals he requires.

He can exclude or include any or all of the total number of terminals of the system. A total information system is provided which makes communication between the various services immediate and verifiable. Thus, the time-lag between requests for services and results of work-ups is shortened considerably.

The data base of a medical information system is the information gathered during the care of patients.

The management of medical records is uniquely facilitated by TIPS. It is a completely dynamic system which requires neither a monitor nor an executive. It permits variable format programming without the undue complexity usually associated with this feature in most computer systems. For example, a typical hospital laboratory has a few hundred different diagnostic tests available. One patient may require only two or three. Another patient may require about twenty. It is obviously impractical to assign fixed fields for all tests on one format. TIPS offers options ranging from either mouse selections through a nested set of fields until the desired variable is selected, or typing the required tests for the patient on a form, or combinations of both.

Information can be accessed from many points of view. For example, either all the information associated with an individual patient, including past as well as present admission, namely an individual’s record, can be retrieved, or some specific information associated with a population of patients can be accessed, or some information about either can be collected and presented appropriately for the medical or paramedical user. Thus, the dietician can collect diet lists for the total patient population, or the doctor can gather all the results of a work-up on a given patient.

For example it would take four TIPS statements to collect a list of all male patients between the ages of 3 and 5, born in City A, with disease Y, and treated with drug X for N months. Thus; research requiring data for statistical problems, such as those frequencies of occurrence can be gathered. For more intricate problems such as those which involve classification of patients and courses of treatment for large populations, data can be accessed without TIPS having to create or utilize complex cross-indexing systems. This is the first system to provide this capability that effects large savings in storage.

Forms for inputting data are easily created at a console. It is as simple as sitting at a typewriter and just typing out the specific form required, namely typing in the headings and appropriate spaces. That is all. Once a form has been created and used to input information, it cannot be altered or destroyed, so that data cannot inadvertently be lost. The headings of a form are the names of parts of data on a page. Any data which is NAMED, either part of a page of data or a page of data, can be accessed.

TIPS is an English source-language, whose operating system occupies about 10,000 Bytes of memory. Applications programs are a series of English statements, which makes TIPS learnable in half a day.

In summary TIPS offers:

*Very rapid access to pages of data in memory

*Choice of “global” or local access to data

*Dynamic nesting of files and pages

*Self allocation of storage resources

*Modularity of system concept

*Automatic structuring of input data

*Simple English Applications programming vocabulary

*Efficient, thrifty memory utilization

*On-line Monitoring of File Directories

*On-line Modification of System Access by Authorized Personel

*On-line Monitor of Data Base Resources

*On-line Modification of System Application Programs & Testing those

 Programs

*Send/Receive data to/from Remote Site(s)

*DOWN TIME-Periodic servicing of individual Printers; NOT the Entire

 System

*PEAK PERIOD USEAGE WILL NOT CAUSE A VISABLE WAIT
2. STRUCTURE OF THE PROGRAMMING SYSTEM

A. THE FILE STRUCTURE

The file structure of TIPS offers to the user many unique advantages.

 Basically, there are two elements to the structure:

1. Files

2. Data Pages

The structure of all elements is identical, the only difference is in their contents.

It is entirely possible that an element used as a File in one instance might be used as a data page in another. All storage is considered to be segmented into fixed-length blocks. The length of the block is determined by the characteristics of the computer system on which TIPS is implemented.

A File contains “Catalogs” of pages organized by file headings with system pointers indicating the location of the pages. A File may point to other Files which, as such, are treated as data pages of this File. A File may be 1 to n Blocks long.

A data page contains the data of the file (or files) with which it is associated. All pages must be N blocks long where N is established by the characteristic of the application for which TIPS is being used.

Each data page block also contains system pointers to the directories of the files and the name of the form with which the structured page data is associated.

The above features are not directly applicable to the applications programmer since he communicates his problem in a language that overrides the system design concept. He does receive the benefit of working with a well-organized, well-defined system. The Applications group need not be concerned with interrupt protect problems or protecting the integrity of several applications sharing the same resources of the hardware configuration. He can concentrate his entire attention on the application that he is implementing.

Structuring data is quite trivial as far as the user is concerned, since communications of data to and from the system are performed with TIPS functions which automatically causes the data to be structured

.

B. THE LANGUAGE

There are two modes of command execution. The first is the direct mode.

This mode consists of commands entered by the user without a step marker prefix. The

System is thereby requested to respond immediately to the action stated in the command.

Example:

a) DO FILE A, PAGE B, PART C

Where the system will start executing the program

Stored in file A, on page B at part (or step) C

b) DISPLAY FORM RECORD
Where the system will display the form named “RECORD”. In the direct command mode the commands are operated upon interpretively.

A second mode of command execution is the stored command. To enter stored commands the user might type the direct command:

DEMAND FILE PROG1, PAGE PROGTEST

The system will respond by displaying on the CRT a blank form. The display cursor will be located at line 1. The user will then start entering his new program by means of the CRT keyboard. At the completion of typing, the user’s program will be contained on file PROG1 page PROGTEST. The user can now cause his program to be executed by typing:

DO FILE PROG1, PAGE PROGTEST

The system will start executing his program at the first statement on the page PROGTEST. He could have requested that execution begin at some other statement of the program.

C. THE COMPILER
It is envisioned that the user will retain the program in the interactive

 mode to error-check the veracity of his statements. When he is satisfied with his program he can then cause the program to be compiled by typing the direct command:

COMPILE FILE PROG1, PAGE PROGTEST

The program will then be compiled. The compiler is designed to take maximum advantage of the file oriented structure of the system. When compiled, the sequence or program will operate an order of magnitude faster than the same problem stated in industrial standard high-level language, i.e., FORTRAN, COBAL etc… This is possible since statements are compiled as a series of calls to functions that are an integral part of TIPS. These functions are written in an assembler code to optimize execution speed and minimize storage requirements.

The above compiled statement will occupy 64 bytes of memory. This compilation efficiency results in a significant saving in storage requirements. For a multi-user, multi-task environment we see a correspondingly significant increase in total system efficiency. This is true because a large portion of a specific user’s task can be in memory at any given instance.

The length of the compiler itself is very short, since the technique used is to essentially cause each statement to be interpreted without allowing the functions to be executed. All functions or segments of TIPS are absolutely recursive. There is no exception to this rule. As a consequence, all functions are also re-entrant and interruptable. One of the significant features is that there is not an overhead time penalty for using the compiling techniques we have chosen.

D. COMMAND EXAMPLES
. Presented here to demonstrate the capabilities of TIPS are examples of

typical program statements. For clarity in the text in the following examples, responses

generated by the system on the CRT face will be boxed in. User responses (keyboard entries) are underscored. Most of the responses by the system will, of course, be presented on the display so that a programming user can take advantage of the high speed of displays, however, the programmer/user can also request that responses by the system be made on the printer.

1. To input a new form:

DEMAND FORM ALPHA

ALPHA LIST

ALPHA LIST

A

A

B

B

C

C

D

D

2. To examine a form:

DISPLAY FORM ALPHA

ALPHA LIST

A

B

C

D

3. To input a complex form:

DEMAND FORM RECORD

NAME:

NAME:

ADDRESS:

ADDRESS:

AGE:

DATE:

AGE:

DATE:

DIAGNOSIS:

4. To input a page through a specific form:

DEMAND FILE PATIENTS, PAGE TOM JONES, IN FORM RECORD

NAME:

ADDRESS:

AGE:

DATE:

DIAGNOSIS:

TOM JONES*10 MAIN ST*

28*8/22/94* INSULIN SHOCK

NAME: TOM JONES

ADDRESS: 10 MAIN ST

AGE:28
DATE:8/22/94

DIAGNOSIS: INSULIN SHOCK

5. Data can be described on a form by the following:

DEMAND FORM DATE

DATE:

DATE:

NAME:

NAME:

AGE:

AGE:

ADDRESS:

ADDRESS:

DIAGNOSIS:

DIAGNOSIS:

SET FILE DATA, PAGE1=FILE PATIENTS, PAGE TOM JONES,

IN-FORM DATE, DISPLAY FILE DATA, PAGE1

DATE:8/22/94

NAME:TOM JONES

AGE:28

ADDRESS:10 MAIN ST.

DIAGNOSIS: INSULIN SHOCK

6. The following is an example of conditional clauses. Let there be a file that is N pages long. This is a file of patient records PATIENTS that were entered in the form RECORD described in one of the above examples. We would like to create a file of all 30 years old patients where the diagnosis is insulin shock.

SET FILE TEST, PAGE(Y)=FILE PATIENTS, PAGE(X), IF FILE PATIENTS, PAGE(X), PART DIAGNOSIS=”INSULIN SHOCK”

AND IF FILE PATIENTS PAGE(X), PART AGE=30FOR X=1:1:N@

 Our newly created file, in this example would consist of two pages, PAGE FRANK JONES and PAGE JOE DOAKS.

3. HISTORY OF THE LANGUAGE

The language of TIPS is based upon JOSS (JOHNNIAC Open-Shop System)

which was developed by the Rand Corporation in the early 1960’s.

Note: Refer to: JOSS: A DESIGNER’S VIEW OF AN EXPERIMENTAL ON-LINE COMPUTER SYSTEM BY J.C. Shaw of the Rand Corporation, Santa Monica, California copied from the PROCEEDINGS – FALL JOINT COMPUTER CONFERENCE, 1964.

Other effort in similar development was undertaken by the University of Pittsburgh (PIL) Pittsburgh Interpretive Language and Sanders Associates Incorporated (FOPS) – File Oriented Programming System. The Sander’s effort resulted in the

KAISER CLINI-CALL* SYSTEM.
4. OLD SYSTEM ARCHITECTURE

The Sanders effort was started in late 1965 and terminated in 1972. The system

used two Honeywell minicomputers, a DDP-516 and a DDP-416. The 416 had a reduced instruction set but otherwise identical to the 516. The total system was state-of-the-art at the time. Much effort was done in marketing in the Medical Information Management environment; to no avail – due to cost – and the entire Department was disbanded.

System deficiencies includes:
(1) Inadequate Core Memory for the Language Processor & therefore:

(2) User Slots limited to four (4) & therefore:

(3) Disk swapping was necessary & therefore:

(4) Disk access was 90 milli-seconds average & therefore:

(5) Six (6) or more Users of rapid Lightpen strikes resulted in noticeable

slowing in response time. Keyboard inputs were never a problem.

The sixteen (16) bit computer had limited addressing capability and forced Indirect or Indexed Addressing for Memory Reference Instructions in too many instances. Prior to being disbanded, an effort in redesign of the DDP-516 was pursued but not completed.

Disk storage was limited to eight (8) units which provided 6.4 Mbytes for Application Programs and Data. A disk Sector contained 32 16-Bit words, including overhead (pointers, descriptors).

*CLINI-CALL IS A REGISTERED TRADEMARK OF SANDERS ASSOCIATES INC, NASHUA, N.H.

The CRT Monitors were physically page-oriented and was capable of displaying 1019 characters including format types. A “Racetrack” character generator was used. All cabling was direct twisted pair-parallel data; up to 1000 feet.
5.
NEW SYSTEM ARCHITECTURE
This design is similar to its predecessor with. two major exceptions. The two processors are identical FPGA devices with similar ISA (Instruction Set Architecture) as the DDP-516. Several instructions were discarded and several instructions were added to enhance data manipulation and conditional testing. The purpose in retaining the ISA is to minimize changes to capture EXISTING SOFTWARE. The other major difference is the use of SSRAM (Synchronous Static Random Access Memory) both Two-port and Four port, in lieu of Disk for storing current Application Programs and Data Storage for each USER (Up to 128).

The USER STATION consists of a CRT/Flat Panel Monitor, Keyboard, Mouse, Printer, ID Reader, and a small assembly containing Interface Logic. The assembly also provides connectors for the local components and one connection to a remote Computer Assembly. A Station may include/exclude the Printer and ID Reader. The monitor is capable of displaying up to 2048 characters organized 80 characters per line and up to 25.6 lines in a Tabular fashion. The Tabular display of characters is necessary for Mouse and Keyboard operations such that each Video occurance is directly related to a Refresh Memory address. A complete page of data is limited to 4096 characters, where Scrolling must be used for complete visability.

The CRT Multiplexer function is to address the Refresh Memory whose ASCII

(American Standard Code for Information Interchange) output is applied to the appropriate Character Generator. The Character Generator (CG) is time-shared between eight (8) CRT Monitors. The CRT Mux also contains the necessary timing for addressing the CG’s whose data output is effectively a 7 x 9 Pixel matrix which is transmitted serially via Fiber Channel drivers. The transmission distance from the Processor location is up to one (1) Kilometer. Horizontal and Vertical frame sync are also transmitted via Fiber Channel drivers.

The Refresh Memory is Four-Port SSRAM where Port 4 is used for FBC (Fully

Buffered Channel) Read/Write (Edit) operations. The FBC is used because it does not arbitrate with Instruction execution; is logically identical to a DMA; the difference being, where it is functionally implemented.

 The Boot Load Logic is activated on Power-UP to initialize the Instruction Memory and Local Memory of both the Language and Peripheral Processors. The following sequence is initiated:

1. Issue Global reset

2. Clear Program & Local Memory; Language and Peripheral Processor

3. Write Program & Local Memory; both processors

4. Initialize Character Generators

5. Issue “RUN” to both Processors

Both processors commence an “Initialize Routine” starting at address Zero. Upon completion, both Processors execute a HLT instruction with Interrupts enabled.

The processors have nothing to process until a USER at one of 128 Terminals makes either a Keyboard entry or a Mouse Click Selection. Or if an Inter-system Interrupt (ISI) request comes via the expansion Port to the Peripheral processor for a Hard Disk operation.

A Modified Harvard Architecture is used namely; an Instruction memory and a Local memory for a single Source and single Destination Instruction Operands. The Instruction Memory is organized 72 Bits by 128K and the Local Memory is organized

64 Bits by 128K. The Global Memory is organized 64 Bit by 512K

The Keyboard/Mouse/I.D. Reader interface to the CICU (Console Interrupt Control Unit) is serial where the CICU performs a controlled shift (Clock-in/Clock-out)

of the Start Bit, ID Bits, followed by the data. The Start Bit will halt the CICU Scanner;

examine the two ID bits and shift in the required number of bits. Upon completion of the shift, the CICU will generate an Interrupt to the Language Processor (a dedicated Vector), perform a Single Word Read of the Data which contains the User Number, a Character/Function Code or Refresh Memory Address of the Mouse Click, then commence processing. The CICU is readied for other inputs upon completion of the Read. Double Clicking is never required. The Mouse Interrupt is dependent upon the TIPS Mouse Operator and System Variables LP1, LP2, LP3 and LP4 useage in an Application Program.

The ID Reader is an optional device for gaining access to system useage. The “Initialize” code is sent to the CICU whenever a card is placed in the Reader. The “Signature” code is sent to the CICU by depressing the appropriate key on the Keyboard and signifies that data to follow is an Identification Code. An Application Program will determine WHO and WHERE and WHAT TYPE of DATA the card user may gain access to in the system. In this case the User may be You or a System Applications Programmer.

A System CRT Monitor with Keyboard is provided primarily for Debugging System Software of either processor. A Control Panel is also provided for Single-Stepping through a Program. The Processors are switch selectable. The Programmer may modify either Program Memory or Local Memory as necessary. The End-Item-Hardware will NOT have this capability. As a result – it is IMPOSSIBLE for VIRUS to enter the system.

The remote COMPUTER ASSEMBLY can accommodate up to 128 User Stations without noticeable degradation in response to user requests. The mounting rack contains a Language Processor and a Peripheral Processor with the required SSRAM (Synchronous Static Random Access Memory) resources for Instructions, Local Memory, and Global Memory. The two processors are identical ERIN64 FPGA devices having identical Instruction sets. Also provided is the Hard Drive Disk(s), Power Supply, Cooling fan assembly, EMI Line Filters, and connectors for Fiber Cables. These cables may be up to one (1) Kilometer in length.

5. SYSTEM SOFTWARE
As previously stated; the Operating System consists of 9,967 Instructions,

including Hard Disk operations for storage/retrieval of data and Application Programs. Disk operations will be removed from the Language Processor and allocated to the Peripheral Processor which will now maintain Directory and File maintenance for the Local system and up to “N” subsystems. This is FULLY optimized Hand Coding using a Symbolic Assembler – not a Compiler. The system programmer is TOTALLY oblivious that the machine does or does not employ Pipeline design and Look-Ahead-Techniques. Once the System Programmer is fully satisfied with his design – this person in association with a Micro-programmer will further optimize the code using the full capabilities of the ERIN64 Processor.

To fully define the hardware requirements of the ERIN64; the following Instruction mix is used:

BRANCH

16%

STORE

 9%

ARITH/LOGIC
45%

LOAD

26%

SHIFT

 4%

An analysis of the 9,967 Instructions, which is a good basis for these percentages, shows that they are approximately correct. A further analysis was accomplished, resulting in:

Instructions Reduce to:

JMP

1318

fully transparent

JST

 764

fully transparent

NOP

fully transparent

LDA/STA
 390 pairs

390

LDA/ADD
 116 pairs

116

LDA/SUB
 86 pairs

 86

LDA/ANA
 148 pairs

148

LDA/ERA
 36 pairs

 36

LDA/AOA
 16 pairs

 16

LDA/CMA
 8 pairs

 8

LDA/TCA
 10 pairs

 10

LDA/CAS
 74 pairs

 74

LDA/IMA
 22 pairs

 22

LDA/LGR
 13 pairs

 0

LDA/ARR
 3 pairs

 0

LDA/LGL
 15 pairs

 0

LDA/ALS
 3 pairs

 0

LDA/ARS
 1 pair

 0

LDA/ALR
 2 pairs

 0

LDA/LDX
 114 pairs

 0

6. THE PROCESSOR
A. INTRODUCTION

The ERIN64 Processor is a 64-bit binary data word general purpose

Computer with a 5 Nano-second Synchronous Static RAM (SSRAM) Memory. The machine organization utilizes a 72 Bit Micro Instruction including an 18 Bit Source and 18 Bit Destination Address. This is adequate for direct addressing the entire Local Memory that is implemented. Standard features include a flexible instruction repertoire of 66 basic commands. There are no hardware registers; except for the Accumulator

(A-Register). Sixteen (16) vectored Interrupts and a powerful I/O Bus structure is provided that uses an FBC (Fully Buffered Channel) for data transfer. A Symbolic Assembler is used to generate machine code having a 72 Bit instruction word.

The ERIN64 is designed for both open-shop scientific applications and real-time on-line data processing and control. A broad variety of applications can be tailored to include data reduction, processing control, instrumentation, simulation, or any combination of these.

Programming the ERIN64 is similar to programming other single source, and single destination address computers using two’s complement notation. Therefore, no major differences confront the programmer who is new to the ERIN64.

B. DESCRIPTION
The End-item Processor is a Quicklogic Corporation QL6600-7 672 pin

Plastic Ball Grid Array device of the Eclipse Family. The current usage of the device is as follows:

Utilized cells (no buffers)
 2830 of 4032

Utilized cells (buffered)
 3344 of 4032

Clock only Cells:

 1 of 9

Bi Directional cells

 503 of 506

PLL cells

 1 of 4X

Flip-flop of IO cells

 218 of 508

1st Flip-flop of Logic cells
 1219 of 4032

2nd Flip-flop of Logic cells
 1220 of 4032

Routing resources:
 102321 of 293995

ViaLink resoutces:

92004 of 7957982

Global Clock Nets

 9 of 9

OSC1 Clock

 50 MHz

Delays that affect the design external to the device are based on these assumptions. SSRAM access = 5NS, address set-up = 5NS from I/O pin to RAM pin, SSRAM data to input pin = 5NS. These are circuit board delays.

The ERIN64 Processor is an Emulation of the Honeywell DDP-516 Minicomputer Instruction Set Architecture (ISA). Why emulate?? – to capture an existing, working program – TIPS. The design uses Schematic Input only –no VHDL.

A modified Harvard Architecture is used where the Processor has a Single Accumulator Register while other registers are identified with a Symbolic Assembler. The separate Program and Data Memory are Boot-Loaded on “Power UP”. Thereafter, the Program Memory is “Read Only”, making it virtually impossible for “VIRUS” infestation.

Several instructions are added to enhance Bit Manipulation and Testing. Although a Barrel Shifter is provided to implement Left/Right Shifts; after an examination of the software; the Clear Bit/Set Bit instructions totally negate any use of shifting. The Shift logic will remain for use by the Peripheral Processor. Remember – Peripheral Devices are Open-Ended. Other instructions are added for usage with an

FFT Butterfly process.

A Global Memory is provided for retrieving “User Programs” and data from the Hard Drive Disk. Message passing is accomplished using an Inter-Processor Interrupt (IPI) and a Mailbox.

Sixteen (16) Vectored Priority Interrupts are provided with discrete mask and common Enable/Disable. Fourteen (14) of these are assigned for IPI (Inter Processor Interrupt), Inter-System Interrupt (ISI), Multiply, Divide Instructions, and the Math Co-processors. This is required because their execution time is variable. The Multiply instruction is Time-Sequenced, 4 x 4, with Nibble Skip of four (4) zeros, and the Divide instruction skips “Strings” of Ones and Zeros. The interrupts used in the Peripheral Processor are Inter Processor, Intersystem, two for FBC (Fully Buffered Channel), Real Time Clock, Printer Buffer Termination,

Eight (8) Instructions and eight Operands are Fetched into an appropriate Pipe-Line Register and may be executed in parallel yielding a variable clock rate when an instruction contains a Data Dependent control Bit (DDP). This is very effective for this application – since there are NO GAMES to play and no unreadable ICONS to waste data space. All Jump (JMP), Jump & Store (JST), NOP’s, and Interrupts occupy program space; however; execute in ZERO time. The Program Location Counter (PLC) is located in the Instruction Memory SSRAM. A 72 Bit Micro-Instruction is used where 18 Bits are Source Address and 18 Bits are Destination Address. The remainder are used to identify instructions by Class with four (4) bits identifying instructions in that class.

Each of the Processing Elements (PE) include the Pipeline Registers, State Logic Timing, Scoreboard, and Wait Logic for operations requiring results of a previous operation. Each PE has been FULLY hand logic optimized – it is further optimized in the device generation process, which modifies the requested function to that of the Logic Cell

Structure. A print-out is available of the affected areas.

C. MATH CO-PROCESSOR

The design uses the on-chip Ram for Registers and Instructions. The

Instructions are organized 256 x 63 and the Data Register Files are 512 X 64 for both the A and B arguments. This is a modified Harvard Architecture. The instruction also contains the address of the next instruction.

 The Co-processor is called when an Operator requests the execution of a Mathematical problem from the File Page being Displayed. The TIPS operating system will cause the “Problem” to be loaded via the FBC, including an “Initiate”. Upon completion of the problem, the co-processor will generate an Interrupt. The “Result” is input and subsequently displayed.

 Since there is no standard for 64 Bit Floating Point; we will use IEEE 754
as shown on Page 4 of the specification; Figure 2 – Double Format; which shows a Sign Bit, 11 Bits for Exponent; and 52 Bits for Mantissa. All other functions are verbatim.

MUL
The design is based on the Advance Micro Device (AMD)

AM25S05 and an Application Note in a vintage 1970

Integrated Circuit Manual. The design performs an Un-Signed

64 x 64 Time-Sequenced, Pipelined multiply/add with Nibble Skip (Nibble = 4 bits). The multiplier must be applied first in sequence for examination of the data. The result is a 128 Bit Product which requires one MOV instruction for inputting the MSP (Most Significant Product) and a second Mov to input the LSP (Least Significant Product). Instruction completion may be signaled with an Interrupt.

DIV
The design performs an Un-Signed 64 x 64 Pipelined divide,

Skipping over strings of One’s and Zero’s.

Note: All Math is based on the Text in “The Logic of Computer Arithmetic” by Ivan Flores, Prentice-Hall, Inc., the Library of Congress Catalog Card Number 63-14727.

The result is a 64 Bit Quotient and 64 Bit Corrected Remainder. The Divisor must be equal to or greater than the Dividend. The Divisor must be applied first for a Normalization Process to occur. Outputting the Dividend will cause an Equalization process to occur. One MOV instruction is required to first input the Quotient and then a second MOV to input the corrected remainder. Instruction completion may be signaled with an Interrupt.

OTHERS

Square Root

FAD
Floating Point Add

Compare

FSB
Floating Point Subtract

Integer To Float

FMP
Floating Point Multiply

Float to Integer

FDV
Floating Point Divide

SINE

COSINE

TANGENT

EXPONENTIATE

BINARY TO BCD

BCD TO BINARY

GENERAL COMMENTS

A distributed Processing approach is used having a Language

Processor; a Peripheral Processor, and two (2) Math Co-processors;
and up to a maximum of eight (8). All eight Co-processors can be

run at the same time at the discretion of the USER. A single Hard Drive Disk having 40 Gbytes of storage capacity will be adequate for most system applications. A “Back-up” Disk can be installed if required by the customer. The capacity is monitored by the Peripheral Processor such that additional Drives may be installed if required.

Several references to the number of instructions (9,967) was the number of 16 Bit Instructions. There are several places in the code where instruction modification techniques were used to reduce the number to fit within the available core space. This is no longer a problem as 256K is available. And under no circumstances will I permit writing in program space, other than boot load.

7. EXISTING DOCUMENTATION

a. Logic Diagrams, ERIN64 Processor

b. Logic Diagrams, Math Co-Processor

c. Logic Diagrams, CICU (Console Interrupt Control Unit)

d. Logic Diagrams, FBC (Fully Buffered Channel)

e. TIPS Software Listing, relocatable, System K6 dated 23 August 1971

f. Peripheral Processor Software, relocatable, System K6 dated 23 August 1971

g. Application Programmers Reference Manual (TIPS), 160 pages,

Single-sided

h. DDP-516 Programmers Reference Manual

i. Programmers Reference Manual for the CLINI_CALL* DATA

MANAGEMENT SYSTEM Rev. G, 11 November 1969

8.
For Secure Visable Data Environments the following will be added:

a. BLANK (till Unblank

b. UNBLANK (Till Blank)

c. CLEAR BLANK (Display all)

d. DISPLAY BLANK (Display only the Blanked Fields)

e. Scroll Screen one line UP
f. Scroll Screen one line DOWN
g. Math Processing
Note: “Home” is the first character position of the first line.

THE LANGUAGE OF TIPS

9. The TIPS LEXICON

The TIPS language consists of vocabulary words, variable markers and punctuation marks which are used to form legal strings called statements for execution by the system.

COMMANDS OPERATORS MODIFIERS VARIALBE MARKERS

PRINT FILE IN FORM “X”-Literal marker

PRIORITY PAGE FOR <X>-Value Marker

DISPLAY PART IF [X]-Numerical position marker

DEMAND FORM ON

SET +(plus) ENQUE PUNCTUATION MARKS

DELETE -(Minus) SYSTEM /-Step Marker

COMPILE =(Equals) VARIABLES :-Range of values marker

WAIT => LP1 ;-Statement terminator

TO <= LP2 ,-List delimiter

DO READER LP3 @-Keyboard input terminator

DONE LIGHTPEN LP4 .-(Center Dot) subfile marker

SEND STEP TIME *-Comment Marker

RECEIVE VIDEO CLOCK

(Reserved) &(Concatenation BLINK

Operator)

 UNBLINK

 XX (1)

 T1

 T2

(1) All 4 character variables starting and ending with $ reserved for error handling and Initialzation.

	ALPHA LIST

A

B

C

D

	ALPHA LIST

A

B

C

D

NAME:

ADDRESS:

AGE:		DATE:

DIAGNOSIS:

NAME:

ADDRESS:

AGE:		DATE:

DIAGNOSIS:

NAME: TOM JONES

ADDRESS: 10 MAIN ST

AGE: 28	DATE: 8/22/94

DIAGNOSIS: INSULIN SHOCK

DATE:

NAME:

AGE:

ADDRESS:

DIAGNOSIS:

DATE: 8/22/94

NAME; TOM JONES

AGE:28

ADDRESS: 10 MAIN ST.

DIAGNOSIS: INSULIN SHOCK

PAGE
2

