[Author Prev][Author Next][Thread Prev][Thread Next][Author Index][Thread Index]
[tor-commits] [stem/master] Adding python 2.x backport of @lru_cache
commit d9fbdc968479b0d413d1ff875ca19c855e7ce2ae
Author: Damian Johnson <atagar@xxxxxxxxxxxxxx>
Date: Sun Oct 6 17:32:10 2013 -0700
Adding python 2.x backport of @lru_cache
Python 3.2 added a memoization annotation to python's functools module. This is
very, very handy, allowing us to avoid the caching boilerplate I do way too
often...
def get_foo():
if self._foo is None:
... stuff to calculate self._foo...
return self._foo
With a memoization function this becomes...
@lru_cache()
def get_foo():
... stuff to calculate self._foo...
This is a MIT licensed backport from...
http://code.activestate.com/recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/
Looking forward to when we require python 3.2 so we can use the builtin!
---
stem/util/__init__.py | 1 +
stem/util/lru_cache.py | 180 ++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 181 insertions(+)
diff --git a/stem/util/__init__.py b/stem/util/__init__.py
index 8ec8eaf..dacd804 100644
--- a/stem/util/__init__.py
+++ b/stem/util/__init__.py
@@ -10,6 +10,7 @@ __all__ = [
"connection",
"enum",
"log",
+ "lru_cache",
"ordereddict",
"proc",
"system",
diff --git a/stem/util/lru_cache.py b/stem/util/lru_cache.py
new file mode 100644
index 0000000..5591862
--- /dev/null
+++ b/stem/util/lru_cache.py
@@ -0,0 +1,180 @@
+# Drop in replace for python 3.2's collections.lru_cache, from...
+# http://code.activestate.com/recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/
+#
+# ... which is under the MIT license. Stem users should *not* rely upon this
+# module. It will be removed when we drop support for python 3.2 and below.
+
+"""
+Memoization decorator that caches a function's return value. If later called
+with the same arguments then the cached value is returned rather than
+reevaluated.
+
+This is a a python 2.x port of `functools.lru_cache
+<http://docs.python.org/3/library/functools.html#functools.lru_cache>`_. If
+using python 3.2 or later you should use that instead.
+"""
+
+from collections import namedtuple
+from functools import update_wrapper
+from threading import RLock
+
+_CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])
+
+class _HashedSeq(list):
+ __slots__ = 'hashvalue'
+
+ def __init__(self, tup, hash=hash):
+ self[:] = tup
+ self.hashvalue = hash(tup)
+
+ def __hash__(self):
+ return self.hashvalue
+
+def _make_key(args, kwds, typed,
+ kwd_mark = (object(),),
+ fasttypes = {int, str, frozenset, type(None)},
+ sorted=sorted, tuple=tuple, type=type, len=len):
+ 'Make a cache key from optionally typed positional and keyword arguments'
+ key = args
+ if kwds:
+ sorted_items = sorted(kwds.items())
+ key += kwd_mark
+ for item in sorted_items:
+ key += item
+ if typed:
+ key += tuple(type(v) for v in args)
+ if kwds:
+ key += tuple(type(v) for k, v in sorted_items)
+ elif len(key) == 1 and type(key[0]) in fasttypes:
+ return key[0]
+ return _HashedSeq(key)
+
+def lru_cache(maxsize=100, typed=False):
+ """Least-recently-used cache decorator.
+
+ If *maxsize* is set to None, the LRU features are disabled and the cache
+ can grow without bound.
+
+ If *typed* is True, arguments of different types will be cached separately.
+ For example, f(3.0) and f(3) will be treated as distinct calls with
+ distinct results.
+
+ Arguments to the cached function must be hashable.
+
+ View the cache statistics named tuple (hits, misses, maxsize, currsize) with
+ f.cache_info(). Clear the cache and statistics with f.cache_clear().
+ Access the underlying function with f.__wrapped__.
+
+ See: http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
+
+ """
+
+ # Users should only access the lru_cache through its public API:
+ # cache_info, cache_clear, and f.__wrapped__
+ # The internals of the lru_cache are encapsulated for thread safety and
+ # to allow the implementation to change (including a possible C version).
+
+ def decorating_function(user_function):
+
+ cache = dict()
+ stats = [0, 0] # make statistics updateable non-locally
+ HITS, MISSES = 0, 1 # names for the stats fields
+ make_key = _make_key
+ cache_get = cache.get # bound method to lookup key or return None
+ _len = len # localize the global len() function
+ lock = RLock() # because linkedlist updates aren't threadsafe
+ root = [] # root of the circular doubly linked list
+ root[:] = [root, root, None, None] # initialize by pointing to self
+ nonlocal_root = [root] # make updateable non-locally
+ PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields
+
+ if maxsize == 0:
+
+ def wrapper(*args, **kwds):
+ # no caching, just do a statistics update after a successful call
+ result = user_function(*args, **kwds)
+ stats[MISSES] += 1
+ return result
+
+ elif maxsize is None:
+
+ def wrapper(*args, **kwds):
+ # simple caching without ordering or size limit
+ key = make_key(args, kwds, typed)
+ result = cache_get(key, root) # root used here as a unique not-found sentinel
+ if result is not root:
+ stats[HITS] += 1
+ return result
+ result = user_function(*args, **kwds)
+ cache[key] = result
+ stats[MISSES] += 1
+ return result
+
+ else:
+
+ def wrapper(*args, **kwds):
+ # size limited caching that tracks accesses by recency
+ key = make_key(args, kwds, typed) if kwds or typed else args
+ with lock:
+ link = cache_get(key)
+ if link is not None:
+ # record recent use of the key by moving it to the front of the list
+ root, = nonlocal_root
+ link_prev, link_next, key, result = link
+ link_prev[NEXT] = link_next
+ link_next[PREV] = link_prev
+ last = root[PREV]
+ last[NEXT] = root[PREV] = link
+ link[PREV] = last
+ link[NEXT] = root
+ stats[HITS] += 1
+ return result
+ result = user_function(*args, **kwds)
+ with lock:
+ root, = nonlocal_root
+ if key in cache:
+ # getting here means that this same key was added to the
+ # cache while the lock was released. since the link
+ # update is already done, we need only return the
+ # computed result and update the count of misses.
+ pass
+ elif _len(cache) >= maxsize:
+ # use the old root to store the new key and result
+ oldroot = root
+ oldroot[KEY] = key
+ oldroot[RESULT] = result
+ # empty the oldest link and make it the new root
+ root = nonlocal_root[0] = oldroot[NEXT]
+ oldkey = root[KEY]
+ oldvalue = root[RESULT]
+ root[KEY] = root[RESULT] = None
+ # now update the cache dictionary for the new links
+ del cache[oldkey]
+ cache[key] = oldroot
+ else:
+ # put result in a new link at the front of the list
+ last = root[PREV]
+ link = [last, root, key, result]
+ last[NEXT] = root[PREV] = cache[key] = link
+ stats[MISSES] += 1
+ return result
+
+ def cache_info():
+ """Report cache statistics"""
+ with lock:
+ return _CacheInfo(stats[HITS], stats[MISSES], maxsize, len(cache))
+
+ def cache_clear():
+ """Clear the cache and cache statistics"""
+ with lock:
+ cache.clear()
+ root = nonlocal_root[0]
+ root[:] = [root, root, None, None]
+ stats[:] = [0, 0]
+
+ wrapper.__wrapped__ = user_function
+ wrapper.cache_info = cache_info
+ wrapper.cache_clear = cache_clear
+ return update_wrapper(wrapper, user_function)
+
+ return decorating_function
_______________________________________________
tor-commits mailing list
tor-commits@xxxxxxxxxxxxxxxxxxxx
https://lists.torproject.org/cgi-bin/mailman/listinfo/tor-commits