[Author Prev][Author Next][Thread Prev][Thread Next][Author Index][Thread Index]
[tor-commits] [metrics-web/master] Add George Danezis' censorship detector.
commit ee9b5da66a11d5289749f7a18703e381702d116d
Author: Karsten Loesing <karsten.loesing@xxxxxxx>
Date: Mon Sep 16 18:06:28 2013 +0200
Add George Danezis' censorship detector.
This is a slightly tweaked version of metrics-tasks.git/task-2718/.
---
detector/.gitignore | 2 +
detector/country_info.py | 251 ++++++++++++++++++++++++++
detector/detector.py | 437 ++++++++++++++++++++++++++++++++++++++++++++++
detector/detector.sh | 5 +
4 files changed, 695 insertions(+)
diff --git a/detector/.gitignore b/detector/.gitignore
new file mode 100644
index 0000000..29a7166
--- /dev/null
+++ b/detector/.gitignore
@@ -0,0 +1,2 @@
+*.csv
+
diff --git a/detector/country_info.py b/detector/country_info.py
new file mode 100644
index 0000000..9dbdeb5
--- /dev/null
+++ b/detector/country_info.py
@@ -0,0 +1,251 @@
+# -*- coding: utf-8 -*-
+
+countries = {
+ "ad" : "Andorra",
+ "ae" : "the United Arab Emirates",
+ "af" : "Afghanistan",
+ "ag" : "Antigua and Barbuda",
+ "ai" : "Anguilla",
+ "al" : "Albania",
+ "am" : "Armenia",
+ "an" : "the Netherlands Antilles",
+ "ao" : "Angola",
+ "aq" : "Antarctica",
+ "ar" : "Argentina",
+ "as" : "American Samoa",
+ "at" : "Austria",
+ "au" : "Australia",
+ "aw" : "Aruba",
+ "ax" : "the Aland Islands",
+ "az" : "Azerbaijan",
+ "ba" : "Bosnia and Herzegovina",
+ "bb" : "Barbados",
+ "bd" : "Bangladesh",
+ "be" : "Belgium",
+ "bf" : "Burkina Faso",
+ "bg" : "Bulgaria",
+ "bh" : "Bahrain",
+ "bi" : "Burundi",
+ "bj" : "Benin",
+ "bl" : "Saint Bartelemey",
+ "bm" : "Bermuda",
+ "bn" : "Brunei",
+ "bo" : "Bolivia",
+ "br" : "Brazil",
+ "bs" : "the Bahamas",
+ "bt" : "Bhutan",
+ "bv" : "the Bouvet Island",
+ "bw" : "Botswana",
+ "by" : "Belarus",
+ "bz" : "Belize",
+ "ca" : "Canada",
+ "cc" : "the Cocos (Keeling) Islands",
+ "cd" : "the Democratic Republic of the Congo",
+ "cf" : "Central African Republic",
+ "cg" : "Congo",
+ "ch" : "Switzerland",
+ "ci" : u"Côte d'Ivoire",
+ "ck" : "the Cook Islands",
+ "cl" : "Chile",
+ "cm" : "Cameroon",
+ "cn" : "China",
+ "co" : "Colombia",
+ "cr" : "Costa Rica",
+ "cu" : "Cuba",
+ "cv" : "Cape Verde",
+ "cx" : "the Christmas Island",
+ "cy" : "Cyprus",
+ "cz" : "the Czech Republic",
+ "de" : "Germany",
+ "dj" : "Djibouti",
+ "dk" : "Denmark",
+ "dm" : "Dominica",
+ "do" : "the Dominican Republic",
+ "dz" : "Algeria",
+ "ec" : "Ecuador",
+ "ee" : "Estonia",
+ "eg" : "Egypt",
+ "eh" : "the Western Sahara",
+ "er" : "Eritrea",
+ "es" : "Spain",
+ "et" : "Ethiopia",
+ "fi" : "Finland",
+ "fj" : "Fiji",
+ "fk" : "the Falkland Islands (Malvinas)",
+ "fm" : "the Federated States of Micronesia",
+ "fo" : "the Faroe Islands",
+ "fr" : "France",
+ "fx" : "Metropolitan France",
+ "ga" : "Gabon",
+ "gb" : "the United Kingdom",
+ "gd" : "Grenada",
+ "ge" : "Georgia",
+ "gf" : "French Guiana",
+ "gg" : "Guernsey",
+ "gh" : "Ghana",
+ "gi" : "Gibraltar",
+ "gl" : "Greenland",
+ "gm" : "Gambia",
+ "gn" : "Guinea",
+ "gp" : "Guadeloupe",
+ "gq" : "Equatorial Guinea",
+ "gr" : "Greece",
+ "gs" : "South Georgia and the South Sandwich Islands",
+ "gt" : "Guatemala",
+ "gu" : "Guam",
+ "gw" : "Guinea-Bissau",
+ "gy" : "Guyana",
+ "hk" : "Hong Kong",
+ "hm" : "Heard Island and McDonald Islands",
+ "hn" : "Honduras",
+ "hr" : "Croatia",
+ "ht" : "Haiti",
+ "hu" : "Hungary",
+ "id" : "Indonesia",
+ "ie" : "Ireland",
+ "il" : "Israel",
+ "im" : "the Isle of Man",
+ "in" : "India",
+ "io" : "the British Indian Ocean Territory",
+ "iq" : "Iraq",
+ "ir" : "Iran",
+ "is" : "Iceland",
+ "it" : "Italy",
+ "je" : "Jersey",
+ "jm" : "Jamaica",
+ "jo" : "Jordan",
+ "jp" : "Japan",
+ "ke" : "Kenya",
+ "kg" : "Kyrgyzstan",
+ "kh" : "Cambodia",
+ "ki" : "Kiribati",
+ "km" : "Comoros",
+ "kn" : "Saint Kitts and Nevis",
+ "kp" : "North Korea",
+ "kr" : "the Republic of Korea",
+ "kw" : "Kuwait",
+ "ky" : "the Cayman Islands",
+ "kz" : "Kazakhstan",
+ "la" : "Laos",
+ "lb" : "Lebanon",
+ "lc" : "Saint Lucia",
+ "li" : "Liechtenstein",
+ "lk" : "Sri Lanka",
+ "lr" : "Liberia",
+ "ls" : "Lesotho",
+ "lt" : "Lithuania",
+ "lu" : "Luxembourg",
+ "lv" : "Latvia",
+ "ly" : "Libya",
+ "ma" : "Morocco",
+ "mc" : "Monaco",
+ "md" : "the Republic of Moldova",
+ "me" : "Montenegro",
+ "mf" : "Saint Martin",
+ "mg" : "Madagascar",
+ "mh" : "the Marshall Islands",
+ "mk" : "Macedonia",
+ "ml" : "Mali",
+ "mm" : "Burma",
+ "mn" : "Mongolia",
+ "mo" : "Macau",
+ "mp" : "the Northern Mariana Islands",
+ "mq" : "Martinique",
+ "mr" : "Mauritania",
+ "ms" : "Montserrat",
+ "mt" : "Malta",
+ "mu" : "Mauritius",
+ "mv" : "the Maldives",
+ "mw" : "Malawi",
+ "mx" : "Mexico",
+ "my" : "Malaysia",
+ "mz" : "Mozambique",
+ "na" : "Namibia",
+ "nc" : "New Caledonia",
+ "ne" : "Niger",
+ "nf" : "Norfolk Island",
+ "ng" : "Nigeria",
+ "ni" : "Nicaragua",
+ "nl" : "the Netherlands",
+ "no" : "Norway",
+ "np" : "Nepal",
+ "nr" : "Nauru",
+ "nu" : "Niue",
+ "nz" : "New Zealand",
+ "om" : "Oman",
+ "pa" : "Panama",
+ "pe" : "Peru",
+ "pf" : "French Polynesia",
+ "pg" : "Papua New Guinea",
+ "ph" : "the Philippines",
+ "pk" : "Pakistan",
+ "pl" : "Poland",
+ "pm" : "Saint Pierre and Miquelon",
+ "pn" : "the Pitcairn Islands",
+ "pr" : "Puerto Rico",
+ "ps" : "the Palestinian Territory",
+ "pt" : "Portugal",
+ "pw" : "Palau",
+ "py" : "Paraguay",
+ "qa" : "Qatar",
+ "re" : "Reunion",
+ "ro" : "Romania",
+ "rs" : "Serbia",
+ "ru" : "Russia",
+ "rw" : "Rwanda",
+ "sa" : "Saudi Arabia",
+ "sb" : "the Solomon Islands",
+ "sc" : "the Seychelles",
+ "sd" : "Sudan",
+ "se" : "Sweden",
+ "sg" : "Singapore",
+ "sh" : "Saint Helena",
+ "si" : "Slovenia",
+ "sj" : "Svalbard and Jan Mayen",
+ "sk" : "Slovakia",
+ "sl" : "Sierra Leone",
+ "sm" : "San Marino",
+ "sn" : "Senegal",
+ "so" : "Somalia",
+ "sr" : "Suriname",
+ "st" : u"São Tomé and PrÃncipe",
+ "sv" : "El Salvador",
+ "sy" : "the Syrian Arab Republic",
+ "sz" : "Swaziland",
+ "tc" : "Turks and Caicos Islands",
+ "td" : "Chad",
+ "tf" : "the French Southern Territories",
+ "tg" : "Togo",
+ "th" : "Thailand",
+ "tj" : "Tajikistan",
+ "tk" : "Tokelau",
+ "tl" : "East Timor",
+ "tm" : "Turkmenistan",
+ "tn" : "Tunisia",
+ "to" : "Tonga",
+ "tr" : "Turkey",
+ "tt" : "Trinidad and Tobago",
+ "tv" : "Tuvalu",
+ "tw" : "Taiwan",
+ "tz" : "the United Republic of Tanzania",
+ "ua" : "Ukraine",
+ "ug" : "Uganda",
+ "um" : "the United States Minor Outlying Islands",
+ "us" : "the United States",
+ "uy" : "Uruguay",
+ "uz" : "Uzbekistan",
+ "va" : "Vatican City",
+ "vc" : "Saint Vincent and the Grenadines",
+ "ve" : "Venezuela",
+ "vg" : "the British Virgin Islands",
+ "vi" : "the United States Virgin Islands",
+ "vn" : "Vietnam",
+ "vu" : "Vanuatu",
+ "wf" : "Wallis and Futuna",
+ "ws" : "Samoa",
+ "ye" : "Yemen",
+ "yt" : "Mayotte",
+ "za" : "South Africa",
+ "zm" : "Zambia",
+ "zw" : "Zimbabwe"
+ }
diff --git a/detector/detector.py b/detector/detector.py
new file mode 100644
index 0000000..7f924db
--- /dev/null
+++ b/detector/detector.py
@@ -0,0 +1,437 @@
+## Copyright (c) 2011 George Danezis <gdane@xxxxxxxxxxxxx>
+##
+## All rights reserved.
+##
+## Redistribution and use in source and binary forms, with or without
+## modification, are permitted (subject to the limitations in the
+## disclaimer below) provided that the following conditions are met:
+##
+## * Redistributions of source code must retain the above copyright
+## notice, this list of conditions and the following disclaimer.
+##
+## * Redistributions in binary form must reproduce the above copyright
+## notice, this list of conditions and the following disclaimer in the
+## documentation and/or other materials provided with the
+## distribution.
+##
+## * Neither the name of <Owner Organization> nor the names of its
+## contributors may be used to endorse or promote products derived
+## from this software without specific prior written permission.
+##
+## NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
+## GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
+## HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
+## WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+## MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+## DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+## LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+## BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+## OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
+## IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+##
+## (Clear BSD license: http://labs.metacarta.com/license-explanation.html#license)
+
+## This script reads a .csv file of the number of Tor users and finds
+## anomalies that might be indicative of censorship.
+
+# Dep: matplotlib
+from pylab import *
+import matplotlib
+
+# Dep: numpy
+import numpy
+
+# Dep: scipy
+import scipy.stats
+from scipy.stats.distributions import norm
+from scipy.stats.distributions import poisson
+
+# Std lib
+from datetime import date
+from datetime import timedelta
+import os.path
+
+# Country code -> Country names
+import country_info
+
+# write utf8 to file
+import codecs
+
+days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
+
+def get_country_name_from_cc(country_code):
+ if (country_code.lower() in country_info.countries):
+ return country_info.countries[country_code.lower()]
+ return country_code # if we didn't find the cc in our map
+
+"""
+Represents a .csv file containing information on the number of
+connecting Tor users per country.
+
+'store': Dictionary with (<country code>, <counter>) as key, and the number of users as value.
+ <country code> can also be "date"...
+'all_dates': List of the data intervals (with default timedelta: 1 day).
+'country_codes': List of all relevant country codes.
+'MAX_INDEX': Length of store, number of country codes etc.
+'date_min': The oldest date found in the .csv.
+'date_min': The latest date found in the .csv.
+"""
+class torstatstore:
+ def __init__(self, file_name):
+ f = file(file_name)
+ country_codes = f.readline()
+ country_codes = country_codes.strip().split(",")
+
+ store = {}
+ MAX_INDEX = 0
+ for i, line in enumerate(f):
+ MAX_INDEX += 1
+ line_parsed = line.strip().split(",")
+ for j, (ccode, val) in enumerate(zip(country_codes,line_parsed)):
+ processed_val = None
+ if ccode == "date":
+ try:
+ year, month, day = int(val[:4]), int(val[5:7]), int(val[8:10])
+ processed_val = date(year, month, day)
+ except Exception, e:
+ print "Parsing error (ignoring line %s):" % j
+ print "%s" % val,e
+ break
+
+ elif val != "NA":
+ processed_val = int(val)
+ store[(ccode, i)] = processed_val
+
+ # min and max
+ date_min = store[("date", 0)]
+ date_max = store[("date", i)]
+
+ all_dates = []
+ d = date_min
+ dt = timedelta(days=1)
+ while d <= date_max:
+ all_dates += [d]
+ d = d + dt
+
+ # Save for later
+ self.store = store
+ self.all_dates = all_dates
+ self.country_codes = country_codes
+ self.MAX_INDEX = MAX_INDEX
+ self.date_min = date_min
+ self.date_max = date_max
+
+ """Return a list representing a time series of 'ccode' with respect
+ to the number of connected users.
+ """
+ def get_country_series(self, ccode):
+ assert ccode in self.country_codes
+ series = {}
+ for d in self.all_dates:
+ series[d] = None
+ for i in range(self.MAX_INDEX):
+ series[self.store[("date", i)]] = self.store[(ccode, i)]
+ sx = []
+ for d in self.all_dates:
+ sx += [series[d]]
+ return sx
+
+ """Return an ordered list containing tuples of the form (<number of
+ users>, <country code>). The list is ordered with respect to the
+ number of users for each country.
+ """
+ def get_largest(self, number):
+ exclude = set(["all", "??", "date"])
+ l = [(self.store[(c, self.MAX_INDEX-1)], c) for c in self.country_codes if c not in exclude]
+ l.sort()
+ l.reverse()
+ return l[:number]
+
+ """Return a dictionary, with <country code> as key, and the time
+ series of the country code as the value.
+ """
+ def get_largest_locations(self, number):
+ l = self.get_largest(number)
+ res = {}
+ for _, ccode in l[:number]:
+ res[ccode] = self.get_country_series(ccode)
+ return res
+
+"""Return a list containing lists (?) where each such list contains
+the difference in users for a time delta of 'days'
+"""
+def n_day_rel(series, days):
+ rel = []
+ for i, v in enumerate(series):
+ if series[i] is None:
+ rel += [None]
+ continue
+
+ if i - days < 0 or series[i-days] is None or series[i-days] == 0:
+ rel += [None]
+ else:
+ rel += [ float(series[i]) / series[i-days]]
+ return rel
+
+# Main model: computes the expected min / max range of number of users
+def make_tendencies_minmax(l, INTERVAL = 1):
+ lminus1 = dict([(ccode, n_day_rel(l[ccode], INTERVAL)) for ccode in l])
+ c = lminus1[lminus1.keys()[0]]
+ dists = []
+ minx = []
+ maxx = []
+ for i in range(len(c)):
+ vals = [lminus1[ccode][i] for ccode in lminus1.keys() if lminus1[ccode][i] != None]
+ if len(vals) < 8:
+ dists += [None]
+ minx += [None]
+ maxx += [None]
+ else:
+ vals.sort()
+ median = vals[len(vals)/2]
+ q1 = vals[len(vals)/4]
+ q2 = vals[(3*len(vals))/4]
+ qd = q2 - q1
+ vals = [v for v in vals if median - qd*4 < v and v < median + qd*4]
+ if len(vals) < 8:
+ dists += [None]
+ minx += [None]
+ maxx += [None]
+ continue
+ mu, signma = norm.fit(vals)
+ dists += [(mu, signma)]
+ maxx += [norm.ppf(0.9999, mu, signma)]
+ minx += [norm.ppf(1 - 0.9999, mu, signma)]
+ ## print minx[-1], maxx[-1]
+ return minx, maxx
+
+# Makes pretty plots
+def raw_plot(series, minc, maxc, labels, xtitle):
+ assert len(xtitle) == 3
+ fname, stitle, slegend = xtitle
+
+ font = {'family' : 'Bitstream Vera Sans',
+ 'weight' : 'normal',
+ 'size' : 8}
+ matplotlib.rc('font', **font)
+
+ ylim( (-max(series)*0.1, max(series)*1.1) )
+ plot(labels, series, linewidth=1.0, label="Users")
+
+ wherefill = []
+ for mm,mx in zip(minc, maxc):
+ wherefill += [not (mm == None and mx == None)]
+ assert mm < mx or (mm == None and mx == None)
+
+ fill_between(labels, minc, maxc, where=wherefill, color="gray", label="Prediction")
+
+ vdown = []
+ vup = []
+ for i,v in enumerate(series):
+ if minc[i] != None and v < minc[i]:
+ vdown += [v]
+ vup += [None]
+ elif maxc[i] != None and v > maxc[i]:
+ vdown += [None]
+ vup += [v]
+ else:
+ vup += [None]
+ vdown += [None]
+
+ plot(labels, vdown, 'o', ms=10, lw=2, alpha=0.5, mfc='orange', label="Downturns")
+ plot(labels, vup, 'o', ms=10, lw=2, alpha=0.5, mfc='green', label="Upturns")
+
+ legend(loc=2)
+
+ xlabel('Time (days)')
+ ylabel('Users')
+ title(stitle)
+ grid(True)
+ F = gcf()
+
+ F.set_size_inches(10,5)
+ F.savefig(fname, format="png", dpi = (150))
+ close()
+
+def absolute_plot(series, minc, maxc, labels,INTERVAL, xtitle):
+ in_minc = []
+ in_maxc = []
+ for i, v in enumerate(series):
+ if i > 0 and i - INTERVAL >= 0 and series[i] != None and series[i-INTERVAL] != None and series[i-INTERVAL] != 0 and minc[i]!= None and maxc[i]!= None:
+ in_minc += [minc[i] * poisson.ppf(1-0.9999, series[i-INTERVAL])]
+ in_maxc += [maxc[i] * poisson.ppf(0.9999, series[i-INTERVAL])]
+ if not in_minc[-1] < in_maxc[-1]:
+ print in_minc[-1], in_maxc[-1], series[i-INTERVAL], minc[i], maxc[i]
+ assert in_minc[-1] < in_maxc[-1]
+ else:
+ in_minc += [None]
+ in_maxc += [None]
+ raw_plot(series, in_minc, in_maxc, labels, xtitle)
+
+"""Return the number of downscores and upscores of a time series
+'series', given tendencies 'minc' and 'maxc' for the time interval
+'INTERVAL'.
+
+If 'scoring_interval' is specifed we only consider upscore/downscore
+that happened in the latest 'scoring_interval' days.
+"""
+def censor_score(series, minc, maxc, INTERVAL, scoring_interval=None):
+ upscore = 0
+ downscore = 0
+
+ if scoring_interval is None:
+ scoring_interval = len(series)
+ assert(len(series) >= scoring_interval)
+
+ for i, v in enumerate(series):
+ if i > 0 and i - INTERVAL >= 0 and series[i] != None and series[i-INTERVAL] != None and series[i-INTERVAL] != 0 and minc[i]!= None and maxc[i]!= None:
+ in_minc = minc[i] * poisson.ppf(1-0.9999, series[i-INTERVAL])
+ in_maxc = maxc[i] * poisson.ppf(0.9999, series[i-INTERVAL])
+ if (i >= (len(series) - scoring_interval)):
+ downscore += 1 if minc[i] != None and v < in_minc else 0
+ upscore += 1 if maxc[i] != None and v > in_maxc else 0
+
+ return downscore, upscore
+
+def plot_target(tss, TARGET, xtitle, minx, maxx, DAYS=365, INTERV = 7):
+ ctarget = tss.get_country_series(TARGET)
+ c = n_day_rel(ctarget, INTERV)
+ absolute_plot(ctarget[-DAYS:], minx[-DAYS:], maxx[-DAYS:], tss.all_dates[-DAYS:],INTERV, xtitle = xtitle)
+
+def write_censorship_report_prologue(report_file, dates, notification_period):
+ if (notification_period == 1):
+ date_str = "%s" % (dates[-1]) # no need for date range if it's just one day
+ else:
+ date_str = "%s to %s" % (dates[-notification_period], dates[-1])
+
+ prologue = "=======================\n"
+ prologue += "Automatic Censorship Report for %s\n" % (date_str)
+ prologue += "=======================\n\n"
+ report_file.write(prologue)
+
+## Make a league table of censorship + nice graphs
+def plot_all(tss, minx, maxx, INTERV, DAYS=None, rdir="img"):
+ rdir = os.path.realpath(rdir)
+ if not os.path.exists(rdir) or not os.path.isdir(rdir):
+ print "ERROR: %s does not exist or is not a directory." % rdir
+ return
+
+ summary_file = file(os.path.join(rdir, "summary.txt"), "w")
+
+ if DAYS == None:
+ DAYS = 6*31
+
+ s = tss.get_largest(200)
+ scores = []
+ for num, li in s:
+ print ".",
+ ds,us = censor_score(tss.get_country_series(li)[-DAYS:], minx[-DAYS:], maxx[-DAYS:], INTERV)
+ # print ds, us
+ scores += [(ds,num, us, li)]
+ scores.sort()
+ scores.reverse()
+ s = "\n=======================\n"
+ s+= "Report for %s to %s\n" % (tss.all_dates[-DAYS], tss.all_dates[-1])
+ s+= "=======================\n"
+ print s
+ summary_file.write(s)
+ for a,nx, b,c in scores:
+ if a > 0:
+ s = "%s -- down: %2d (up: %2d affected: %s)" % (c, a, b, nx)
+ print s
+ summary_file.write(s + "\n")
+ xtitle = (os.path.join(rdir, "%03d-%s-censor.png" % (a,c)), "Tor report for %s -- down: %2d (up: %2d affected: %s)" % (c, a, b, nx),"")
+ plot_target(tss, c,xtitle, minx, maxx, DAYS, INTERV)
+ summary_file.close()
+
+"""Write a CSV report on the minimum/maximum users of each country per date."""
+def write_all(tss, minc, maxc, INTERVAL=7):
+ ranges_file = file("direct-users-ranges.csv", "w")
+ ranges_file.write("date,country,minusers,maxusers\n")
+ exclude = set(["all", "??", "date"])
+ for c in tss.country_codes:
+ if c in exclude:
+ continue
+ series = tss.get_country_series(c)
+ for i, v in enumerate(series):
+ if i > 0 and i - INTERVAL >= 0 and series[i] != None and series[i-INTERVAL] != None and series[i-INTERVAL] != 0 and minc[i]!= None and maxc[i]!= None:
+ minv = minc[i] * poisson.ppf(1-0.9999, series[i-INTERVAL])
+ maxv = maxc[i] * poisson.ppf(0.9999, series[i-INTERVAL])
+ if not minv < maxv:
+ print minv, maxv, series[i-INTERVAL], minc[i], maxc[i]
+ assert minv < maxv
+ ranges_file.write("%s,%s,%s,%s\n" % (tss.all_dates[i], c, minv, maxv))
+ ranges_file.close()
+
+"""Return a URL that points to a graph in metrics.tpo that displays
+the number of direct Tor users in country 'country_code', for a
+'period'-days period.
+
+Let's hope that the metrics.tpo URL scheme doesn't change often.
+"""
+def get_tor_usage_graph_url_for_cc_and_date(country_code, dates, period):
+ url = "https://metrics.torproject.org/users.html?graph=direct-users&start=%s&end=%s&country=%s&events=on&dpi=72#direct-users\n" % \
+ (dates[-period], dates[-1], country_code)
+ return url
+
+"""Write a file containing a short censorship report over the last
+'notification_period' days.
+"""
+def write_ml_report(tss, minx, maxx, INTERV, DAYS, notification_period=None):
+ if notification_period is None:
+ notification_period = DAYS
+
+ report_file = codecs.open('short_censorship_report.txt', 'w', 'utf-8')
+ file_prologue_written = False
+
+ s = tss.get_largest(None) # no restrictions, get 'em all.
+ scores = []
+ for num, li in s:
+ ds,us = censor_score(tss.get_country_series(li)[-DAYS:], minx[-DAYS:], maxx[-DAYS:], INTERV, notification_period)
+ scores += [(ds,num, us, li)]
+ scores.sort()
+ scores.reverse()
+
+ for downscores,users_n,upscores,country_code in scores:
+ if (downscores > 0) or (upscores > 0):
+ if not file_prologue_written:
+ write_censorship_report_prologue(report_file, tss.all_dates, notification_period)
+ file_prologue_written = True
+
+ if ((upscores > 0) and (downscores == 0)):
+ s = "We detected an unusual spike of Tor users in %s (%d upscores, %d users):\n" % \
+ (get_country_name_from_cc(country_code), upscores, users_n)
+ else:
+ s = "We detected %d potential censorship events in %s (users: %d, upscores: %d):\n" % \
+ (downscores, get_country_name_from_cc(country_code), users_n, upscores)
+
+ # Also give out a link for the appropriate usage graph for a 90-days period.
+ s += get_tor_usage_graph_url_for_cc_and_date(country_code, tss.all_dates, 90)
+
+ report_file.write(s + "\n")
+
+ report_file.close()
+
+def main():
+ # Change these to customize script
+ CSV_FILE = "direct-users.csv"
+ GRAPH_DIR = "img"
+ # Time interval to model connection rates.
+ INTERV = 7
+ # Consider maximum DAYS days back.
+ DAYS= 6 * 31
+
+ tss = torstatstore(CSV_FILE)
+ l = tss.get_largest_locations(50)
+ minx, maxx = make_tendencies_minmax(l, INTERV)
+ #plot_all(tss, minx, maxx, INTERV, DAYS, rdir=GRAPH_DIR)
+ write_all(tss, minx, maxx, INTERV)
+
+ # Make our short report; only consider events of the last day
+ write_ml_report(tss, minx, maxx, INTERV, DAYS, 1)
+
+if __name__ == "__main__":
+ main()
diff --git a/detector/detector.sh b/detector/detector.sh
new file mode 100755
index 0000000..8e2ea47
--- /dev/null
+++ b/detector/detector.sh
@@ -0,0 +1,5 @@
+#!/bin/bash
+wget -qO direct-users.csv --no-check-certificate https://metrics.torproject.org/csv/direct-users.csv
+python detector.py
+cat short_censorship_report.txt | mail -E -s 'Possible censorship events' tor-censorship-events@xxxxxxxxxxxxxxxxxxxx
+
_______________________________________________
tor-commits mailing list
tor-commits@xxxxxxxxxxxxxxxxxxxx
https://lists.torproject.org/cgi-bin/mailman/listinfo/tor-commits