[Author Prev][Author Next][Thread Prev][Thread Next][Author Index][Thread Index]

Re: [tor-dev] [proposal] Post-Quantum Secure Hybrid Handshake Based on NewHope



bancfc@xxxxxxxxxxxxxxx transcribed 0.7K bytes:
> Some great developments in lattice-based crypto. DJB just released a paper
> on NTRU Prime:
> 
> 
> 1. Competitively fast compared to the leading lattice-based cryptosystems
> including New Hope.
> 
> 2. Safer implementation of NTRU that avoids vulnerable ring structures and
> runs in constant-time.
> 
> 3. The only implemntation that mitigates decryption failures completely,
> killing information leaks to adversaries.
> 
> 4. Includes some handy advice for "transitional cryptography" - mixing and
> matching classical signature schemes with PQ public-keys.
> 
> 
> https://ntruprime.cr.yp.to/ntruprime-20160511.pdf

Hello,

I am similarly excited to see a more comprehensive write up on the NTRU Prime
idea from Dan's blog post several years ago on the idea for a
subfield-logarithm attack on ideal-lattice-based cryptography. [0]  The idea to
remove some of the ideal structure from the lattice, while still aiming to
keep a similarly high, estimated minimum, post-quantum security strength as
Newhope (~2^128 bits post-quantum security and ~2^215 classical for NTRU
Prime, versus ~2^206 bits post-quantum and ~2^229 classical for Newhope) and
speed efficiencies competitive with NewHope, [1] by altering the original NTRU
parameters is very exciting, and I'm looking forward to more research
w.r.t. to the ideas of the original blog post (particularly the exploitation
of the ideal structure).  Additionally, the Toom6 decomposition of the
"medium-sized" 768-degree polynomial in NTRU Prime in order to apply Karatsuba
is quite elegant.  Also, I'm glad to see that my earlier idea [2] to apply a
stable sorting network in order to generate valid polynomial coefficients in
constant-time is also suggested within the NTRU Prime paper.

However, from the original NTRU Prime blog post, Dan mentioned towards the
end: "I don't recommend actually using NTRU Prime unless and until it survives
years of serious cryptanalytic attention, including quantitative evaluation of
specific parameter choices."  LÃo Ducas, one of the NewHope authors, has
responded to the NTRU Prime paper with a casual cryptanalysis of its security
claims, [3] mentioning that "A quick counter-analysis suggests the security of
the proposal is overestimated by about 75 bits" bringing NTRU Prime down to
~2^140 classical security.

Current estimates on a hybrid BKZ+sieving attack combined with Dan's
subfield-logarithm attack, *if* it proves successful someday (which it's
uncertain yet if it will be), would (being quite generous towards the
attacker) roughly halve the pre-quantum security bits for n=1024 (since the
embedded subfield tricks are probably not viable), bringing NewHope down to
103/114 bits.  For the case of the hybrid handshake in this proposal, it still
doesn't matter, because the attacker would still also need to break X25519,
which still keeps its 2^128 bits of security.  (Not to mention that 103-bits
post-quantum security is not terrible, considering that the attacker still
needs to do 2^103 computations for each and every Tor handshake she wants to
break because keys are not reused.)

Please feel free to correct me if I've misunderstood something.  IANAC
and all that.

Further, there are other problems in the NTRU Prime paper:

 1. Defining PFS as "the server erases its key every 60 seconds" seems
    arbitrary and a bit strange.  It also makes the claims hard to analyse in
    comparison with the NTRU literature (where, as far as I know, it's never
    stated whether or not keys may be reused, and what downsides might come
    with that) as well as with NewHope (where it's explicitly stated that keys
    should not be reused).

 2. In Fig. 1.2, the number of bytes sent by a NewHope client is 1792, not
    2048.  (To be fair, it was 2048 bytes in an earlier version.)

 3. The bandwidth estimates for NTRU Prime do not take into account that, due
    to providing a key-encapsulation mechanism rather than a key exchange, the
    client must already know the server's long-term public encryption key, in
    order that the client may encrypt its public key to the server in the
    first round of the handshake.

    Further, and more specifically in the context of Tor handshakes, this
    requires that Tor either add a second round to the handshake (which we
    currently have no mechanism, nor proposed mechanism, for), or else that we
    add the server's NTRU Prime key to the server's (micro)descriptor,
    increasing descriptor size by 1232 bytes per relay.  For the case of
    adding these keys to microdescriptors, where the average microdescriptor
    size is currently 416 bytes [4] and ~1 Gb/s is spent on requests to the
    directories for descriptors, [5] increasing the average microdescriptor
    size to 1648 bytes would roughly quadruple the amount of network traffic
    used by directories to respond to fetches (and then double that number
    again because additional bandwidth is used through the client's guard
    relay, since most directory fetches are tunneled).  This means that any
    relay providing < ~1.142 Mb/s bandwidth would be using up more network
    bandwidth to tell everything else in the network about its existence and
    keys than the relay itself actually provides.  This means that 3840 out of
    the current 7100 become a burden on the network.  This might be doable,
    [6] but I just wanted to point out how much it matters for us to not need
    to add giant keys to descriptors.

[0]: https://blog.cr.yp.to/20140213-ideal.html
[1]: https://cryptojedi.org/papers/newhope-20160328.pdf
[2]: https://lists.torproject.org/pipermail/tor-dev/2016-May/010903.html
[3]: https://groups.google.com/forum/?_escaped_fragment_=topic/cryptanalytic-algorithms/BoSRL0uHIjM#!topic/cryptanalytic-algorithms/BoSRL0uHIjM
[4]: https://collector.torproject.org/recent/relay-descriptors/microdescs/micro/2016-05-16-14-05-37-micro
[5]: https://metrics.torproject.org/dirbytes.html?start=2016-02-16&end=2016-05-16
[6]: As an aside, I'd be super happy to kick the crap relays out of the network:
     https://lists.torproject.org/pipermail/tor-dev/2014-September/007558.html

Best Regards,
-- 
 ââ isis agora lovecruft
_________________________________________________________
OpenPGP: 4096R/0A6A58A14B5946ABDE18E207A3ADB67A2CDB8B35
Current Keys: https://fyb.patternsinthevoid.net/isis.txt

Attachment: signature.asc
Description: Digital signature

_______________________________________________
tor-dev mailing list
tor-dev@xxxxxxxxxxxxxxxxxxxx
https://lists.torproject.org/cgi-bin/mailman/listinfo/tor-dev