15-744 Final Project Proposal

Improving Tor Performance with Google’s Quic

Kevin Ku (kku)
Xiaofan Li (xli2)

Introduction

Quic is Google’s experimental transport layer protocol that supports multiplexing over UDP
and provides security that’s comparable to TLS. It supports ordered and reliable delivery, while
avoiding the pain points of multiplexing over TCP. It also supports pluggable congestion control
algorithms and synchronization cookie caching to reduce connection establishment time.

In their paper, “Performance and Security Improvements for Tor: A Survey,” AlSabah and
Goldberg outlined several issues that negatively impact Tor’s performance. Out of all the issues,
we found 2 that we think can be improved with Quic. First of all, the authors point out that Tor
suffers from the head-of-line problem. Due to the fact that Tor multiplexes multiple circuits onto
a single TCP connection, if the first packet is lost, TCP will buffer all the other packets belonging
to different circuits until the first packet can be retransmitted. This significantly degrades
performance since the packets belonging to different circuits don’t depend on the packet that
was lost. Secondly, they argue that Tor lacks a proper congestion control mechanism. The
problem stems from TCP’s poor support for multiplexing. Consider the situation where we have
2 circuits, one running file sharing and another running web browsing, multiplexed onto the
same TCP connection. As the file sharing circuit drop more packets, TCP congestion control will
kick in. Such congestion control will unfairly impair the performance of the web browsing circuit.

In addition, we think Quic can also reduce the communication cost in constructing a circuit in
Tor. There are 2 aspects to this improvement. First of all, since each user and relay needs to
establish TLS connection to another relay, Quic’s ability to reuse synchronization cookie can
reduce the latency for establishing these connections. Secondly, since the cost of circuit
construction latency is reduced, users can establish new circuits more quickly. In turn, users can
keep less backup circuits on standby, thereby reducing the circuit construction load on each
relay.

In this project, we plan to evaluate the performance gains from replacing Tor’s current TCP
stack with Quic. Initially, we’'ll experiment with default Quic configuration, which solves the
head-of-line problem. Next, we hope to play around with Quic’s pluggable congestion control
framework to find a good congestion control algorithm for Tor.


https://www.chromium.org/quic
https://eprint.iacr.org/2015/235.pdf

Challenges

The Tor project listed some concerns of using UDP instead of TCP. Some of the concerns,
such as lack of good application-level stream support and encryption issues that arrive from
packet drops, are solved by Quic. We are unsure of the following problems:

1. We may need to do IP-level packet normalization to guard against device fingerprinting
attacks.

2. Certain protocols like DNS might leak information.

Tor namespace (“.onion” addresses) might not be supported.

4. Exit policies on exit nodes for arbitrary IP packets need an IDS to enforce.

w

Despite the potential problems, we believe that they can all be resolved with more application
logic. In addition, we aim to evaluate the performance gains of using Quic in Tor, while these
problems mostly deal with anonymity of the service.

Plans

As shown in Figure 1, using the already established circuit, the client will connect to the
guard relay from the OP (Onion Proxy). The OP is responsible for taking the payload, converting
it into a cell according to the Tor network specification, encryption, wrapping it with a Quic
packet header and finally sending it to the guard relay. Then the other relays in the network will
do the normal decryption and forwarding of the cell on behalf of the client. However, instead of
using TCP, they will communicate with the Quic protocol. At the exit relay, the payload is
retrieved and sent to the conversing server with a normal TCP packet.

To perform our experiments, we need to set up 3 Tor relays plus an end host. We plan on
running the relays on 3 different cloud providers and in 3 different geographical locations in
order to simulate real network traffic. Therefore, it would be great if we could get some AWS and
Google Cloud educational credit to run an instance on AWS.


https://www.torproject.org/docs/faq.html.en#TransportIPnotTCP

Client

TCP

Other servers

Figure 1: Concept Diagram of Tor Running on Quic



